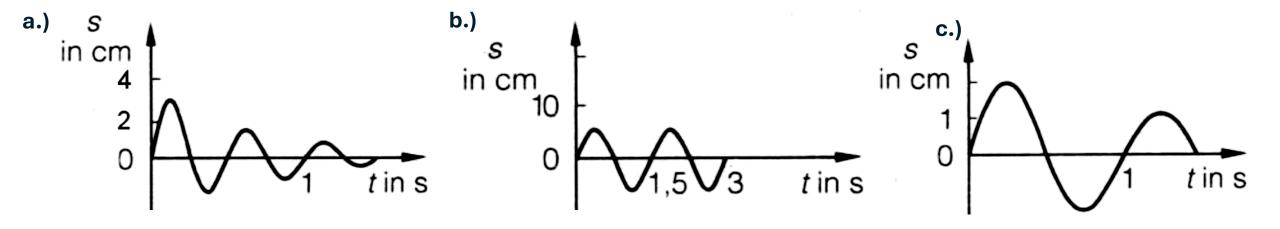
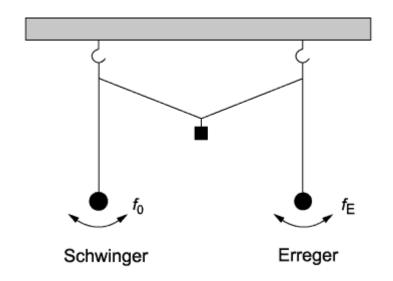
Eigenschwingungen, erzwungene Schwingungen und Resonanz



Wiederholung

- 1. Nenne mindestens 5 Beispiele für mechanische Schwingungen!
- 1. Gitarrensaite, Stimmgabel, Metronom, Fadenpendel, Last am Kran
- 2. Nenne 3 Beispiele für unerwünschte Schwingungen!
- 2. Schwingen von Maschinenteilen, bei Brücken, Erdbeben
- 3. Was verstehen wir in der Physik unter einer Schwingung?
- 3. Eine ... ist eine periodische Bewegung eines Körpers um seine Gleichgewichtslage.
- 4. Warum bleibt ein Fadenpendel nach dem Loslassen nicht in der Gleichgewichtslage stehen, sondern schwingt einfach weiter?
- 4. Rücktreibende Kraft und die Trägheit bewirken ein Weiterschwingen.

5. Ordne die Schwingungsform (ungedämpft, gedämpft) zu und gib die physikalischen Größen (y_{max} in cm. T in s, f in Hz) der Schwingung an!



	Schwingungsform	y _{max} in cm	Tins	f in Hz
a.)	gedämpft	3	0,5	2
b.)	ungedämpft	5	1,5	0,67
c.)	gedämpft	2	1	1

Eigenschwingungen, erzwungene Schwingungen und Resonanz

LB S. 148/149

Video: 04_Gekoppelte Pendel 2 min

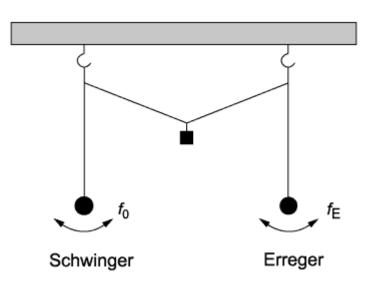
Erzwungene Schwingung bei gekoppelten Pendeln

Youtube-Link

Kann man Glas "zersingen"? (Youtube)

Video: 04_Kann_man_glas_zersingen_explosion_durch_sound_in_slow_motion 5 min

Erzwungene Schwingung und Resonanz


Ein Schwinger führt nach einmaliger Energiezufuhr Eigenschwingungen mit der Eigenfrequenz f₀ aus.

Eine erzwungene Schwingung mit der Erregerfrequenz f_E tritt bei periodischer Energiezufuhr auf.

Bei Resonanz stimmen Eigenfrequenz und Erregerfrequenz überein.

$$f_E = f_0$$

Die Amplitude erreicht ihren Maximalwert.

LK Schwingungen - Punkteverteilung

- 1)
- a) 5 Punkte
- b) 3 Punkte
- c) 2 Punkte
- d) 2 Punkte
- 2) 3 + 3 Punkte
- 3) 2 Punkte
- **4) 24 Punkte**

- **44 41** Punkte Note 1
- **40 33** Punkte Note 2
- **32 27** Punkte Note 3
- **26 18** Punkte Note 4
- 17 9 Punkte Note 5
- 8-0 Punkte Note 6

Resonanzkatastrophe

Video: 4_erzwungene_schwingung_resonanzkatastrophe 5,5 min