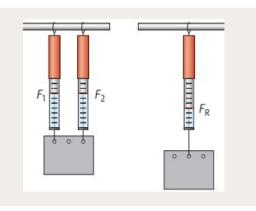

Die Darstellung von Kräften

Das Darstellen von Kräften

Kräfte sind unsichtbar, man kann nur ihre Wirkung feststellen!!!

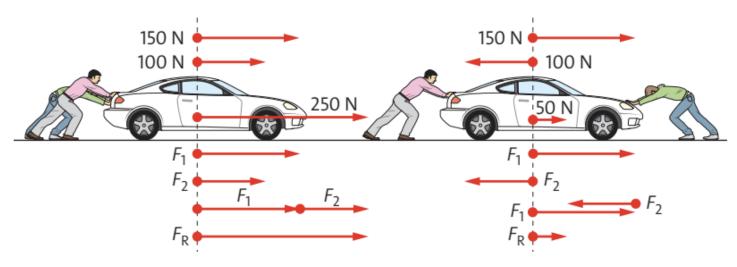
Die Wirkung ist jeweils gleich (Dehnung der Feder).

Addition und Subtraktion von Kräften



Ein Auto wird von mehreren Personen in Fahrtrichtung angeschoben. Wie kann man die Gesamtkraft auf das Fahrzeug ermitteln?

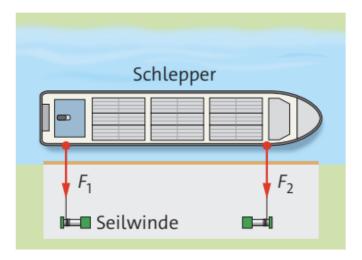
Experiment


1 Gleiche Richtung der Kräfte

- a Hänge einen Körper gleichzeitig an zwei Federkraftmesser und miss die beiden Kräfte F_1 und F_2 .
- **b** Hänge nun denselben Körper an nur einen Federkraftmesser und miss die Kraft F_R .
- **c** Finde einen Zusammenhang zwischen den Kräften F_1 und F_2 und F_R .

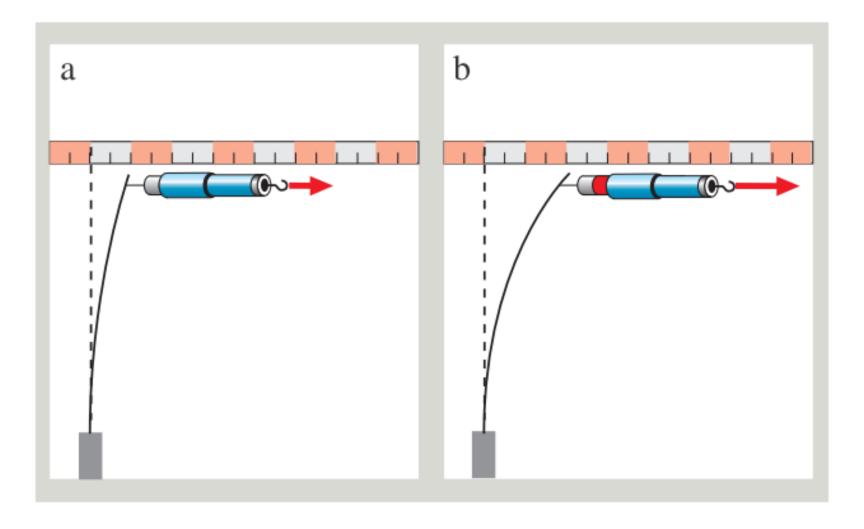
Greifen zwei Kräfte F_1 und F_2 in gleicher Richtung an einem Körper an, kann man beide Kräfte durch eine einzige Kraft F_R ersetzen. Diese resultierende Kraft hat die gleiche Wirkung wie die beiden Kräfte zusammen. In diesem Fall ergibt sich die Größe der resultierenden Kraft aus der Summe der einzelnen Kräfte. Für den Betrag gilt: $F_R = F_1 + F_2$. $\triangleright 3$

Greifen zwei Kräfte in entgegengesetzter Richtung an einem Körper an, ergibt sich die Größe der resultierenden Kraft aus der Differenz ihrer Beträge: $F_R = F_1 - F_2$.



3 Kräfteaddition und –subtraktion

Greifen mehrere Kräfte in gleicher oder entgegengesetzter Richtung an einen Körper an, so ergibt sich die resultierende Kraft durch Addition oder Subtraktion der einzelnen Kräfte.


Aufgaben

- Ein Schlepper wird durch zwei parallele Seilwinden mit je
 12 kN ans Ufer gezogen.
 Bestimme die resultierende
 Kraft ► 4
- **2** Zwei Hunde ziehen entgegengesetzt mit F_1 = 57 N und F_2 = 35 N an einem stabilen Hundespielzeug. Ermittle zeichnerisch die resultierende Kraft.

4 Schiff und Seilwinde

Je größer die eingesetzte Kraft, desto ...

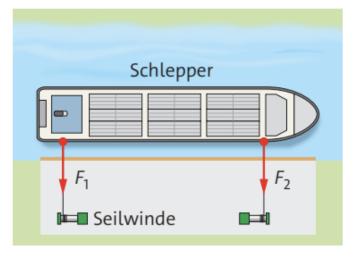
... größer die erzielte Wirkung.

Greifen zwei Kräfte F_1 und F_2 in gleicher Richtung an einem Körper an, kann man beide Kräfte durch eine einzige Kraft F_R ersetzen. Diese resultierende Kraft hat die gleiche Wirkung wie die beiden Kräfte zusammen. In

Die Kräfte greifen in gleicher Richtung am Schlepper an:

$$F_R = F_1 + F_2$$
,
 $F_R = 12 \text{ kN} + 12 \text{ kN} = 24 \text{ kN}$

2 Die Kräfte greifen in entgegengesetzter Richtung am Hundespielzeug an:


$$F_R = F_1 - F_2$$
,
 $F_R = 57N - 35N = 22N$
Die resultierende Kraft FR wirkt in Richtung
der Kraft F_1 .

an einen Körper an, so ergibt sich die resultierende Kraft durch Addition oder Subtraktion der einzelnen Kräfte.

Aufgaben

Ein Schlepper wird durch zwei parallele Seilwinden mit je 12 kN ans Ufer gezogen. Bestimme die resultierende Kraft ► 4

Zwei Hunde ziehen entgegengesetzt mit F_1 = 57 N und F_2 = 35 N an einem stabilen Hundespielzeug. Ermittle zeichnerisch die resultierende Kraft.

4 Schiff und Seilwinde

Wirkungslinie

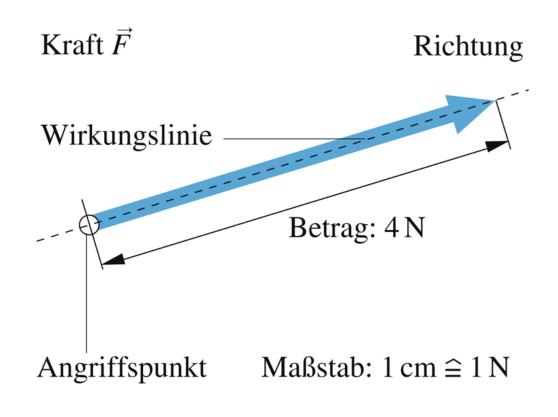
Pfeilrichtung = Richtung der Kraft

Pfeillänge = Stärke (Betrag) der Kraft

Formelzeichen mit Pfeil: F

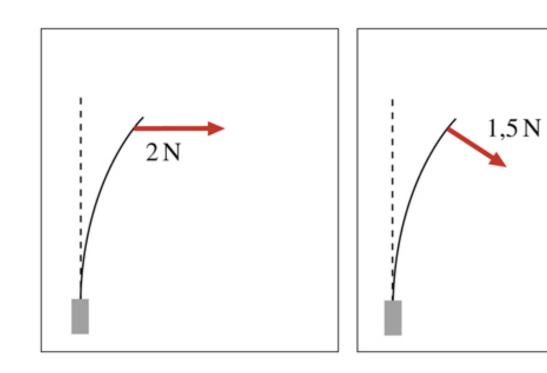
Anfangspunkt = Angriffspunkt

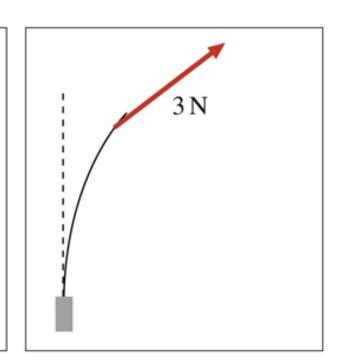
Formelzeichen ohne Pfeil -> Betrag ist gemeint!


Bsp.: F = 40 N

Die Wirkung einer Kraft hängt von ihrem <u>Betrag</u>, ihrer <u>Richtung</u> und von ihrem <u>Angriffspunkt</u> ab.

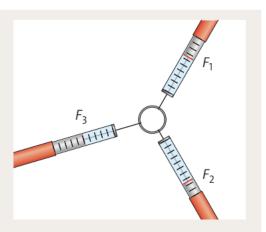
Modell Kraftpfeil

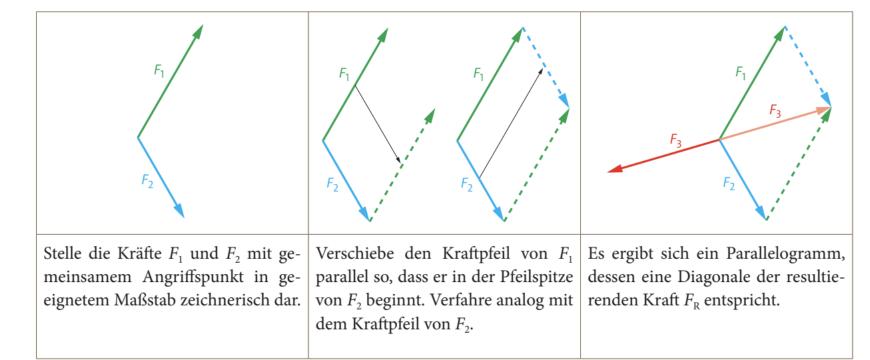

Kräfte sind gerichtete Größen und können mit Pfeilen dargestellt werden.


Der Kraftpfeil ist ein Modell für die Kraft.

Aber: F = 20 N

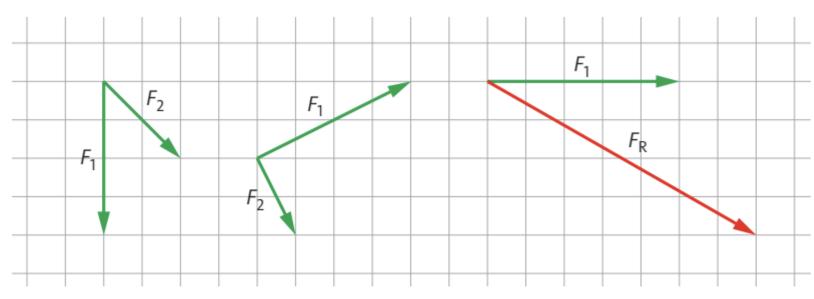
Bsp.: Die Richtung entscheidet ...

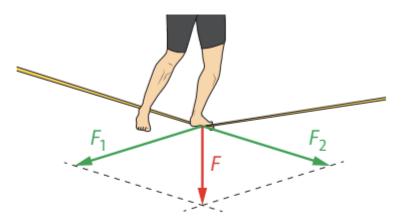



1 N = 1 cm

2 Verschiedene Richtungen der Kräfte

Zwei Kräfte F_1 und F_2 greifen in unterschiedlichen Richtungen an einem Körper an. Bewegt sich der Körper nicht, muss die resultierende Kraft aus F_1 und F_2 den gleichen Betrag haben wie F_3 . Ermittle die Richtung von F_R .


Kräfteaddition Der Betrag der resultierenden Kraft F_R ist kleiner als die Summe der Beträge von F_1 und F_2 . Man ermittelt die resultierende Kraft mithilfe eines Kräfteparallelogramms.


Kräftezerlegung Mithilfe eines Parallelogramms kann man eine Kraft auch in Teilkräfte zerlegen. So teilt sich z. B. die Kraft, die die Person auf das Seil ausübt (Gewichtskraft) in zwei Kräfte auf, die als Zugkräfte an den Seilen angreifen. ▶ 9

Aufgabe

1 Übernimm die Kräftedarstellungen in dein Heft und konstruiere die fehlenden Kraftpfeile. Gib die Beträge der Kräfte an. ► 10

10 Kräfte

9 Kräftezerlegung

Übung Kräfte darstellen

